Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.166115189.98613327.v1

ABSTRACT

There has been an important change in the clinical characteristics and immune profile of COVID-19 patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4 and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) has been identified as an important cause of death of children with COVID-19. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. Atopic diseases, such as allergic asthma and rhinitis, have been shown to be associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, EAACI developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging SARS-CoV-2 variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Asthma , Dermatitis, Atopic , COVID-19
2.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.164751461.12776339.v1

ABSTRACT

Background: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. Methods: : We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. Results: : A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared to pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared to pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. Conclusion: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings have implications for future vaccination strategies and possibly cross-reactive T cell immunity.


Subject(s)
Bronchitis , COVID-19
3.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.162152429.96552508.v1

ABSTRACT

Allergic diseases include asthma, atopic-dermatitis, allergic-rhinitis, drug hypersensitivity and food-allergy. During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical-burden. A large fraction of allergic diseases is characterized by a type-2 immune response involving Th2 cells, type-2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and non-invasive methods. In recent years, a plethora of research has been directed towards finding novel biomarkers of allergic diseases. Promising biomarkers of type-2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric-oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body-fluids and exhaled-air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic-urticaria, atopic-dermatitis, allergic-rhinitis, chronic-rhinosinusitis, food-allergies, anaphylaxis, drug hypersensitivity and allergen-immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.


Subject(s)
IgA Vasculitis , Drug Hypersensitivity , Dermatitis, Atopic , COVID-19
4.
authorea preprints; 2020.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.160916124.47621341.v1

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccine BNT162b2 received approval and within the first few days of public vaccination several severe anaphylaxis cases occurred. An investigation is taking place to understand the cases and their triggers. The vaccine will be administered to a large number of individuals worldwide and concerns raised for severe adverse events might occur. With the current information, the European Academy of Allergy and Clinical Immunology (EAACI) states its position for the following preliminary recommendations that are to be revised as soon as more data emerges. To minimize the risk of severe allergic reactions in vaccinated individuals, it is urgently required to understand the specific nature of the reported severe allergic reactions, including the background medical history of the individuals affected and the mechanisms involved. To achieve this goal all clinical and laboratory information should be collected and reported. Mild and moderate allergic patients should not be excluded from the vaccine as the exclusion of all these patients from vaccination may have a significant impact on reaching the goal of population immunity. Health care practitioners vaccinating against COVID-19 are required to be sufficiently prepared to recognise and treat anaphylaxis properly with the ability to administer adrenaline. A mandatory observation period after vaccine administration of at least 15 minutes for all individuals should be followed. The current guidelines, which exclude patients with severe allergies from vaccination with BNT162b2, should be re-evaluated after more information and experience with the new vaccine develops.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL